Brennstoffzellen-Heiztechnik
Einsatzbereiche brennstoffzelle
Das Infoportal
für Brennstoffzellen
und Erneuerbare Energien

Bis zu 4 Angebote von Fachfirmen aus Ihrer Region - Ihr Preisvergleich

Angebote Preisvergleich anfordern

 

Jetzt auf das entsprechende Thema klicken
und Angebote für einen Preisvergleich erhalten!

E-Mail Drucken PDF

Einsatzbereiche einer Brennstoffzelle, der Brennstoffzellentechnik

 

 

Anwendungsmöglichkeiten

Die ersten Anwendungen von Brennstoffzellen ergaben sich in Bereichen wie Militär und Raumfahrt, in denen die Kosten eine sehr geringe Rolle spielten und die spezifischen Vorteile die Kosten-Vorteile der Dieselgeneratoren überwogen.

Brennstoffzellen sind leichter als Akkumulatoren und zuverlässiger und leiser als Generatoren. Die geringen Geräuschemissionen und die Möglichkeit, Brennstoffzellen nach sehr langer Inaktivität zuverlässig zu betreiben, trugen zu einer anfangs oft militärischen Nutzung sowie einem Einsatz in Notstromversorgungen bei. Zudem arbeiten Brennstoffzellen zusammen mit einem Elektromotor effizienter als Verbrennungsmotoren. Die besondere Stärke von Brennstoffzellen ist jedoch die hohe Energiedichte, wodurch sich das frühzeitige Interesse des Militärs und der Raumfahrt an dieser Technik erklärt.

 

 

Stationärer Einsatz

(nach oben)

Der stationäre Einsatzbereich eines Brennstoffzellensystems erstreckt sich über einen weiten Leistungsbereich, angefangen bei kleinen Systemen mit einer Leistung von zwei bis fünf Kilowatt elektrischer Leistung – z.B. als Hausenergie-Versorgung – bis hin zu Systemen mit mehreren hundert Kilowatt. Größere Systeme werden in Krankenhäusern, Schwimmbädern oder für die Versorgung von kleinen Kommunen eingesetzt.

Eine stromerzeugende brennstoffzellenbasierte HyO-Heizanlage („Hy“ = Hydrogenium = Wasserstoff und „O“ = Oxygenium = Sauerstoff; Mini-Blockheizkraftwerk = Mini-BHKW) besteht aus mehreren Komponenten. Im Idealfall des Bezugs von – möglichst klimaneutral erzeugtem – Wasserstoff wird eine gering-aufwändig herstellbare PEM-BZ (Polymer-Elektrolyt-Membran-Brennstoffzelle) eingesetzt. Solange noch kein (Bio-)Wasserstoff als Brennstoff zur Verfügung steht, sondern stattdessen fossiles oder biogenes Methan („Erdgas“ oder gar „BioErdgas“), ist eine teure und aufwändige Reformer-Einheit erforderlich, die das Methan umwandelt in Wasserstoff zum Betrieb der brennstoffzellenbasierte HyO-Anlage und CO2 (Kohlendioxid, Kohlenstoffdioxid) als Abgas für den Schornstein. Die zweite Komponente ist die HyO-Anlage im engeren Sinne (Brennstoffzelle=BZ oder BSZ), die zur Oxydation des zugeführten Wasserstoffs zu H2O, Sauerstoff („O“)aus der Umgebungsluft verwendet. Hinzu kommen noch die elektrische Leistungselektronik und die dazugehörige Regelung der Betriebsführung. Zur Deckung von thermischen Lastspitzen sind meist zusätzlich konventionelle Wärmeerzeuger installiert.

Für den stationären Anwendungsbereich kommen alle Typen von Brennstoffzellen in Betracht. Aktuelle Entwicklungen beschränken sich auf die SOFC, MCFC und die PEMFC. Die SOFC und die MCFC haben den Vorteil, dass bedingt durch die hohen Temperaturen Erdgas direkt als Brenngas eingesetzt werden kann. Der Reformierungsprozess läuft dabei in der Brennstoffzelle intern ab, was auch bei Erdgasbezug einen Reformer weitgehend überflüssig macht. Die Niedertemperatur-PEMFC benötigt dagegen bei Erdgasbezug für die Umwandlung von Methan in Wasserstoff eine Reformereinheit mit einer aufwändigen Gasreinigungsstufe, weil das Reformat weitgehend von CO befreit werden muss. CO entsteht nämlich bei jeder Reformierung von Kohlenwasserstoffen. CO ist bei diesem BZ-Typ (oder BSZ-Typ= Brennstoffzellentyp) ein Katalysatorgift und reduziert sowohl die Leistung als auch die die Lebensdauer der Zelle signifikant.

Beim Betrieb der Hochtemperaturzellen SOFC und MCFC kann die heiße Abluft zur Sterilisation von Gegenständen genutzt werden. Als Notstromerzeuger sind sie wegen der längeren Anfahrphase ungeeignet. Ein Niedertemperatur-PEMFC-System hingegen kann sich bei plötzlichem Notstrombedarf sehr zügig in Betrieb setzen.

Betriebsweise

(nach oben)

Bei der stationären BZ-Anwendung steht die Wärmeproduktion gegenüber der Stromproduktion im Vordergrund. Diese Systeme werden deshalb meist wärmebedarfsgeführt betrieben. Das bedeutet, dass die Systemleistung nach der benötigten Wärmemenge geregelt wird, wobei der erzeugte elektrische Strom in das öffentliche Stromnetz eingespeist wird. Stationäre BZ-Systeme werden am besten mit einer geringen Leistungsmodulation betrieben. Idealerweise wird der Wärmegrundlastbedarf komplett über das BZ-BHKW gedeckt. (Wärme-)Lastspitzen werden über konventionelle Heizgeräte abgedeckt. Auf diese Weise arbeitet das stationäre BZ-System bei lediglich einem einzigen konstanten Lastpunkt. Dadurch kann der Wirkungsgrad des Systems optimal ausgelegt werden. Die Lebensdauer einer BZ ist in erster Annäherung durch die Anzahl der Start-Stopp-Zyklen bestimmt, da diese die größte Auswirkung auf die Katalysatoren im Inneren zeigen. Für eine PEM-Brennstoffzelle mit geschlossener Kathode gilt, dass sie in ausgeschaltetem Zustand beidseitig – also auch sauerstoffseitig – abgedichtet werden sollte. Das vereinfacht einen erneuten Start, da die für den Betrieb notwendige Feuchtigkeit beibehalten wird, und sich keine schädlichen Gase ansammeln können. Sofern die Lagerung bei Temperaturen unter dem Gefrierpunkt erfolgen soll, muss die Brennstoffzelle komplett ausgetrocknet werden, um Schäden durch Eisbildung zu verhindern.

 

Reformer

Jedes BZ-System kann direkt mit Wasserstoff als Brenngas betrieben werden. Bedingt durch die bereits verfügbare Infrastruktur werden die BZ-BHKWs jedoch nicht direkt mit Wasserstoff, sondern mit Erdgas (oder Flüssiggas) betrieben. Je nach BZ-Typ (siehe oben) muss das Erdgas vor der Umsetzung in der Brennstoffzelle erst in Wasserstoff (PEMFC) bzw. in ein Wasserstoff-/Kohlenmonoxid-/Methan-Gemisch (SOFC) umgewandelt werden. Das geschieht in einem sogenannten Reformer. In dem Reformer wird Erdgas (oder allgemein kohlenwasserstoffhaltige Gase oder Flüssigkeiten) über einen Katalysator bei erhöhter Temperatur in ein wasserstoffreiches Gas (Reformat) umgewandelt, wobei CO2 entsteht.

 

Mobiler Einsatz

 

Straßenverkehr

Hauptartikel: Brennstoffzellenfahrzeug
(nach oben)

Methanolbrennstoffzelle im Mercedes-Benz NECAR 3Mehrere Automobilfirmen (u.a. BMW, Volkswagen, Toyota, Daimler, Ford, Honda, General Motors/Opel) forschen seit zum Teil zwanzig Jahren an Automobilen, deren Treibstoff Wasserstoff ist, und die zur Energieumwandlung Brennstoffzellen sowie einen Elektromotor zum Antrieb nutzen. Ein Beispiel sind die Fahrzeuge NECAR 1 bis NECAR 5 sowie Mercedes-Benz F-Cell von Daimler. Das schweizerische Hy-Light-Fahrzeug rückte 2004 ins Licht der Öffentlichkeit. Derzeit gehen einige MAN-Brennstoffzellen-Stadtbusse in Berlin für die BVG in Betrieb. Bei BMW ist die Brennstoffzelle nicht originär zur Erzeugung elektrischer Antriebsenergie gedacht. Das Konzept sieht hier vor, im von einem Verbrennungsmotor angetriebenen Wasserstoff-Fahrzeug (z.B. 7er Baureihe, Typ E68) das permanent aus dem Wasserstofftank abdampfende Gas in einer Brennstoffzelle zur Stromversorgung des Fahrzeuges zu nutzen, anstatt den Wasserstoff ins Freie entweichen zu lassen.

Förderlich für die erheblichen Anstrengungen in der Forschung war in den USA insbesondere der Zero emission act bzw. das Zero Emission Vehicle mandate (ZEV), die vorsehen, dass Autos zukünftig abgasfrei fahren sollen. Für das Jahr 2003 war vorgesehen, dass 10 % aller neu zugelassenen Fahrzeuge in Kalifornien diesem Gesetz unterliegen sollten . Kurz vorher, nach massivem Druck der amerikanischen Automobilindustrie, wurde das ZEV jedoch gekippt, wenn es auch weiterhin diskutiert wird.

(nach oben)

Durch den verstärkten Einsatz von emissionsfreien Fahrzeugen in Ballungszentren und Großstädten wird eine Verbesserung der dortigen Luftqualität erwartet. Ein Nebeneffekt wäre allerdings, dass die Emissionen vom Ort der Fahrzeugnutzung dorthin verlagert werden, wo der Wasserstoff hergestellt wird, soweit das nicht aufgrund regenerativer Verfahren erfolgt. Für die Wasserstoffherstellung gibt es mehrere Möglichkeiten mit unterschiedlicher Effizienz.

Für den breiten Einsatz der mobilen Wasserstoffanwendungen ist der gleichzeitige Aufbau von Wasserstofftankstellen erforderlich. Am sinnvollsten geschieht das durch den Umbau der Energiewirtschaft zu einer Wasserstoffwirtschaft. Für die Mitnahme von Wasserstoff in Fahrzeugen kommen neben Druckbehältern auch andere Formen der Wasserstoffspeicherung in Frage, beispielsweise in Metallhydriden oder unter hohem Druck und niedriger Temperatur als flüssiger Wasserstoff.

Trotz des hohen Wirkungsgrads der Brennstoffzelle gestaltet sich die Abfuhr der Abwärme auf dem vergleichsweise niedrigen Temperaturniveau der PEM-Brennstoffzelle von etwa 80 °C als problematisch, denn im Gegensatz zum Verbrennungsmotor beinhaltet das relativ kalte Abgas (Wasserdampf) nur eine vergleichsweise geringe Wärmemenge. Demzufolge ist man bestrebt, die Betriebstemperatur der PEM-Brennstoffzelle auf über 100 °C anzuheben, um leistungsstärkere Brennstoffzellen-Automobile mit mehr als 100 kW realisieren zu können.

Bei Temperaturen unterhalb des Gefrierpunkts kann die Startfähigkeit der Brennstoffzelle aufgrund gefrierenden Wassers beeinträchtigt sein. Es muss sichergestellt sein, dass die elektrochemische Reaktion, insbesondere die Diffusion der Brenngase, nicht durch Eisbildung behindert wird. Das kann beispielsweise durch eine geeignete Elektrodenstruktur erzielt werden. Verschiedene Hersteller haben 2003 und 2004 bereits nachgewiesen, dass der Gefrierstart von PEM-Brennstoffzellen bei Temperaturen von bis zu –20 °C möglich ist; die Startzeiten seien mit denen von Verbrennungsmotoren vergleichbar.

(nach oben)

Die schon seriennah verfügbaren Prototypen kleinerer Fahrzeuge haben zum Ziel, die Größe, das Gewicht und die Kosten der Brennstoffzelle und eine geeignete Speicherung des Wasserstoffes zu erproben. So hat Daimler Fahrzeuge der A-Klasse mit Brennstoffzellen vorgestellt. In Hamburg und Stuttgart werden Busse mit Wasserstoffantrieb im normalen Linienbetrieb getestet. Seit dem 16. Juni 2008 liefert Honda in begrenztem Rahmen den PKW FCX Clarity aus, der ausschließlich mit Brennstoffzellentechnik betrieben wird.

Seit 2007 fahren im Fuhrpark des Bundesverkehrsministeriums die ersten Kfz mit Brennstoffzellen-Antrieb.

Ebenfalls etwa seit 2007 gibt es auch Hybrid-Fahrräder und Motorräder mit Brennstoffzellenantrieb.

Mögliche Alternativen zur direkten Wasserstoffspeicherung sind Treibstoffe wie Ethanol, Methanol oder andere Kohlenwasserstoffe, von denen kurz vor Gebrauch der Wasserstoff durch katalytische Verfahren gewonnen wird. Diese Verfahren tragen jedoch in nicht unerheblichem Maße durch CO2-Ausstoß zur Umweltbelastung bei, was die ansonsten perfekte Umweltverträglichkeit der Brennstoffzelle einschränkt. Das ist jedoch dann nicht der Fall, wenn die Treibstoffe aus regenerativ erzeugter Biomasse stammen. Ethanol und Methanol können auch aus Wasser und Kohlendioxid synthetisiert werden, wobei jedoch wiederum die Gewinnung von Kohlendioxid, das in der Luft nur in sehr geringer Konzentration vorkommt, energieaufwendig sein kann. Die Wirtschaftlichkeit dieser Verfahren krankt heute zudem an den Katalysatoren, deren beste Varianten Platin enthalten. Eine breite Verwendung von Platinkatalysatoren würde zudem zu einer Verteuerung des Platins führen, welches ein seltenes und teures Edelmetall ist.

Ende Oktober 2006 erklärte VW den endgültigen Durchbruch bei der Herstellung von kostengünstigen, leistungsfähigen Brennstoffzellen im Hochtemperaturbereich. Probleme werden weniger beim Durchbruch der Brennstoffzellentechnik auf der Fahrzeugseite, sondern mehr in der kostengünstigen und dabei umweltschonenden Gewinnung von Wasserstoff gesehen.

Der Autohersteller Ford gab am 24. Juni 2009 bekannt, dass die Arbeit an Brennstoffzellen eingestellt wird. Ford setzt stattdessen lieber auf Batterien und den Elektromotor..

 

Luftfahrt

(nach oben)

Seit Mitte 2005 sind Brennstoffzellen auch in der Luftfahrt anzutreffen. Eine erste Drohne, deren Elektromotoren von einer Brennstoffzelle angetrieben werden, startete in Yuma, Arizona. Das DLR arbeitet zur Zeit an der Integration der Brennstoffzellentechnik in das unbemannte Forschungsflugzeug „HyFish“, welches im März 2007 in der Nähe von Bern erfolgreich seinen Erstflug absolvierte.[25] Auch an anderer Stelle sind Forschungsaktivitäten in der Luftfahrt im Gange. Zu Beginn des Jahres 2008 wurde in einem Testflug ein umgebauter Airbus A320 mit einer Brennstoffzelle als Backup-System für die Energieversorgung an Bord getestet. Als erfreulicher Nebeneffekt kann das erzeugte Wasser für die Bordversorgung eingesetzt werden, so dass das Abfluggewicht gesenkt werden kann.

Am 3. März 2008 betrieb Boeing zum ersten mal ein kleines Flugzeug, eine Dimona von Diamond Aircraft, mit einem Hybridantrieb: Elektromotor mit Lithium-Ionen-Akkus und Brennstoffzelle. Nach dem Aufstieg mit beiden Energiequellen auf 1000 Meter Höhe wurde der Akku abgetrennt und der Pilot flog die ersten 20 Minuten der Fluggeschichte mit Brennstoffzelle. Entwickelt wurde der Antrieb von Boeing Research & Technology Europe (BR&TE) in Madrid mit europäischen Industriepartnern. Der erste (öffentliche) vollständige Flug (Start - Platzrunde - Landung) eines pilotengesteuerten und ausschließlich mit Brennstoffzellen angetriebenen Flugzeuges fand am 7. Juli 2009 in Hamburg statt. Bei dem Flugzeug handelte es sich um den Motorsegler Antares DLR-H2, mit 20 Metern Spannweite, der vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) sowie den Projektpartnern Lange Aviation, BASF Fuel Cells und Serenergy (Dänemark) sowie in enger Zusammenarbeit mit Airbus in 15 Monaten entwickelt und hergestellt wurde.

Raumfahrt

Die amerikanischen Space Shuttle verwenden Brennstoffzellen mit einer maximalen Dauerleistung von 3 x 7 kW für die Stromversorgung des Orbiters. Das bei den Brennstoffzellen anfallende Wasser kann im Lebenserhaltungssystem verwendet werden.

 

Schifffahrt

(nach oben)

Das weltweit erste Brennstoffzellenboot war die Hydra, die im Jahr 1999 vom Germanischen Lloyd für den öffentlichen Personenverkehr zertifiziert wurde. Dafür wurde eine Alkalische Brennstoffzelle (AFC) ausgewählt, da diese Technologie einfach verfügbar war und für Einsatzfälle auf hoher See mit der salzigen Seeluft besser umgehen kann als die PEM-Brennstoffzellen. Außerdem konnte das Brennstoffzellensystem auch bei Temperaturen unter dem Gefrierpunkt starten, da Kalilauge erst bei ca. –77 °C gefriert und der Wirkungsgrad der AFC-Technologie noch etwa 5 % höher als der der PEM liegt. Die Hydra hat eine Zulassung für zwanzig Passagiere und hat in den Jahren 1999/2000 rund 2.000 Personen befördert. Der Wasserstoff wird im Bug in Metallhydridspeichern bevorratet und reicht für einen 2-Tage-Betrieb bei 8 h Betriebsdauer.

Vorteil der Bevorratung des Wasserstoffs in Metallhydridspeichern ist außerdem die sehr kompakte Lagerung und die Möglichkeit, das Brennstoffzellensystem beim Betanken bereits durch die Abwärme der Metallhydridspeicher vorzuwärmen, um nach dem Tanken mit voller Leistung losfahren zu können.

Das Brennstoffzellensystem basiert auf den Brennstoffzellenstacks und war eine komplette Neuentwicklung mit unter den Stacks liegendem KOH-Vorratsbehälter (drain-system). Die Hydra ist seit 2001 nicht mehr in Betrieb, existiert aber noch im Raum Bonn und hat weltweit erstmalig bewiesen, dass es technologisch möglich ist, mit Brennstoffzellen ein Passagierschiff anzutreiben.

Bei U-Booten ist Deutschland der einzige Anbieter eines serienmäßig hergestellten Modells mit Brennstoffzellen-Zusatzantrieb. Die HDW Kiel in Kooperation mit Siemens und Nordseewerke Emden liefert seit 2005 die U-Boot-Klasse 212 mit einem solchen Antrieb (AIP: air independent propulsion) aus. Er leistet etwa 300 kW (408 PS) und ermöglicht eine Schleichfahrt ohne den 1050-kW-Dieselgenerator. Ebenso hat die U-Boot-Klasse 214(vom selben Hersteller) Brennstoffzellen an Bord.

(nach oben)

 

 

Zurück

Werbung

Suchen

Solarrechner

Photovoltaikrechner, Solarrechner

Anzeigen

Holzpellets

Holzpellets Preis

Pelletspreis berechnen und den günstigsten Anbieter finden.
Pellets Preise

Ihr Eintrag

Kostenlos ins Verzeichnis eintragen.

 

 

Wir möchten uns an der Stelle dafür entschuldigen, dass die Informationen teilweise nicht korrekt, nicht auf dem neusten Stand sind. Wir sind derzeit damit beschäftigt alle Seiten neu aufzubauen und alle Informationen zu überarbeiten. Vielen Dank für Ihr Verständnis.

© Michael Hilß, Brennstoffzellen-heiztechnik.de
All rights reserved.